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Abstract 

 
Humans communicate with text in thousands of 

languages, in dozens of scripts, and a wide variety of 
binary codes.  There is a need to identify the language, 
script and code of this text to enable follow-on 
processing such as transcoding, translation, 
transliteration, routing and prioritization.  This paper 
deals with the implementation of real-time language 
and script identification on high-speed hardware 
(principally a ternary content addressable memory) 
capable of processing network data streams at several 
gigabits per second. 
 
1. Introduction 
 

We wish to accurately identify the language and 
script of text messages in real-time on network data 
streams.  Our interest is in those documents generated 
by humans for humans and not in control and 
handshaking messages primarily designed for 
computer-to-computer communications.  This restricts 
the problem to several thousand human languages, 
each of which may be encoded several different ways 
for transmission over the network.   

The thousands of human languages typically use 
one of 29 scripts.  The scripts consist of phonetic, 
syllabic or pictorial characters: alphabets (e.g., Latin, 
Cyrillic, Arabic, Greek, Thai), syllabaries (Korean), 
and pictograms (e.g., Chinese) [1,2].  Each script may 
be encoded for transmission or storage in a variety of 
codes such as Windows Code Pages [3], UTF-8 [4], or 
HTML special character codes [5].  For example, the 
English language uses the Latin script to render its 
characters and this is typically transmitted and stored 
using US-ASCII (or a functionally equivalent code).     
 
2. Linguistic challenges 
 

There are many difficulties in determining the 
language of a message.  The message may contain only 
a few words.  For example, the message might be 

simply “Yes”.  The message might contain several 
different languages.  For example, the message might 
be “Yes Monsieur Lopez”.  Much language is 
international: “White House”, “President Bush”, “New 
York City”, “Microsoft”, “PlayStation” and “Java” do 
not necessarily imply that the language is English.  
Many words are used, often with different meanings, in 
different languages.  For example, “son” is a common 
word in English, French, Spanish and Italian.  Many 
words may be misspelled either intentionally (as in 
spam) or unintentionally.  Language may be 
transliterated, such as Arabic or Russian appearing in 
the Latin script.  Real people tend to use informal 
transliteration rules, often using characters that look 
like rather than sound like their native characters, and 
show a shocking disregard for formal transliteration 
rules adopted by governments and academics [6].  The 
linguistic content is often a minor constituent, typically 
1-10%, of the characters within messages.  This 
content is skillfully camouflaged by background noise 
consisting of headers, footers, formatting, JavaScript 
[7], etc.  Much of this background noise is in English 
so superficially most messages appear to be in the 
English language.  Finally, real-time processing of 
packetized messages on simple hardware means that 
some packets (and hence text) may be missing or 
appear out of sequence. 

 
3. Technical constraints 
 

The most critical technical constraint is time.  At 
typical network speeds, messages fly by in a few 
microseconds.  The problem can be stated as: “Given a 
few microseconds, can you figure out the language and 
script of a message?”   

We implemented language and script identification 
on an existing platform that necessitated performing 
this process primarily within a Ternary Content 
Addressable Memory (TCAM) [8].  When queried 
with a bit pattern, content addressable memory returns 
the memory location(s) where that pattern appears.  
This CAM is ternary in that bit patterns may be 
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specified as “0”, “1” or “don’t care”.  The application 
of this TCAM to our high-speed requirement resulted 
in several constraints.  Patterns could be no more than 
14 bytes.  Each pattern may belong to only one class 
(i.e., combination of language and script).  Patterns 
may not generate simultaneous matches.  (For 
example, you cannot search for both “men” and 
“menu”.)1 We can accommodate several hundred 
patterns per class.   

The TCAM interfaces with a Field-Programmable 
Gate Array (FPGA) and operates on one packet at a 
time.  Packet payloads are typically 1440 bytes.  
Assuming an average word length of 6 characters plus 
1 space character, a packet may contain about 200 
words.  For each packet, the FPGA accumulates the 
weighted sum (with each pattern assigned a weight 
between 1 and 15) of the TCAM pattern matches for 
each class.  The FPGA reports the weighted counts, 
which saturate at 255, to a CPU that accumulates 
weighted class counts for each message. 
 
4. Identifying language 
 

The commonly used techniques to identify language 
use fixed or variable length N-grams [9,10,11,12] or 
common words [13].  Due to the difficulty of 
performing quality control on the large corpora used to 
generate common patterns, we chose to rely primarily 
on quality control of the common patterns.  We 
selected common words over N-grams to make this 
quality control process easier.  Common words in a 
specific language can be obtained from published word 
frequency lists [14,15], word frequency statistics 
obtained from softcopy corpora, or, for obscure 
languages for which sufficiently large softcopy corpora 
are unavailable, by translation of the common words in 
a similar language.   

As word frequency changes with time, published 
word frequency lists may be out of date.  (For example, 
according to [14], “DOS” is the 450th most commonly 
used word in English.)   Hence we chose to obtain 
word frequencies from newer corpora. 

The rules we set on choosing the patterns to use for 
each language and scripts were: 
1. Eliminate 1 and 2-letter words as being too likely 

to generate false alarms.  Much message content 
may appear semi-random (such as JPG images) 
and a 1-character pattern would be expected to 
generate about 6 matches per packet. 

2. Eliminate words commonly used in more than one 
language. 

                                                        
1 The prior two constraints provide predictable TCAM 

response time by preventing more than one pattern match 
at a time. 

3. Eliminate words commonly used in container 
language such as HTML tags, XML tags, 
JavaScript, and other common formatting. 

4. Eliminate international words (e.g., proper nouns). 
5. Append a space character before and after each 

word to minimize false alarms (for languages that 
normally separate words with spaces).  Thus a 
four-letter word becomes a 6-byte pattern with a 
smaller false alarm rate at the expense of missing 
words immediately followed by a punctuation 
mark.  Exceptions to this rule may be made to 
allow intentional pre-fix or post-fix stemming so 
that “ should” will match “ shouldn’t” and “ 
shoulder”. 

6. Make ASCII patterns case insensitive by setting 
the 6th bit of each character as “don’t care”.  For 
example, “A” is 0100 0001 while “a” is 0110 0001 
in binary so we search for 01X0 0001. 

7. Words that normally include diacritics may be 
written without them.  To allow us to distinguish, 
for example, between normal French and 
unaccented French, we have segregated words 
with diacritics into one class and words without 
diacritics (and possibly words with their diacritics 
removed) into another class.     

Table 1 shows the five most common words in 
English, French (without diacritics), Spanish (without 
diacritics), native Arabic, and transliterated Arabic that 
obey the above rules.  Each underscore indicates a 
single space character. 

 
Table 1. Most common unique words (>2 

letters) 

English French Spanish Arabic Arabic 
Chat 

_the_ _les_ _por_ _االله _ _3ala_ 
_this_ _une_ _una_ _ ىѧѧѧعل_ _inta_ 
_was_ _est_ _como_ _ىѧѧѧإل_ _kil_ 
_his_ _qui_ _pero_ _هѧѧѧѧѧѧعلي_ _wala_ 

_had_ _dans_ _porque_ _هذا_ _enta_ 
 
Chinese, Japanese and Korean use an extremely large 
character set and spaces are infrequent.  Statistics on 
Chinese character sequences have been published 
[16,17].  Table 2 shows the occurrence rates of the 
most common character sequences within a set of more 
than 27,000 news articles from 2003-2004 from 
various Chinese media sources in different countries 
and regions.  

Table 2. Character occurrence in Chinese 
news corpus 

 Character Sequence Length 
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1 2 3 4 

Top 100 40.55% 7.99% 1.87% 0.66% 

Top 
400 73.85% 16.37% 3.99% 1.48% 

 
The table shows that if we search for the 100 most 

common Chinese 3-characters sequences (typically 
encoded in 6-bytes) then we would find about 2 pattern 
matches within a 100-character news-like message; 
searching for 400 such sequences would yield about 4 
pattern matches.  Searching for 2-character sequences 
would quadruple the expected number of pattern 
matches (at the expense of a greater likelihood of false 
detections). 
 
5. How many patterns are needed? 
 

Given the practical limitations on the total number 
of patterns that can be handled by the TCAM, we wish 
to minimize the number of patterns per class.  We can 
estimate the relative value of the number of patterns 
using Zipf’s law [18] that states that the probability of 
the nth most common word declines as 1/na where “a” 
is 1 or slightly greater.  Table 3 shows the relative 
cumulative likelihood (relative to that for the 100 most 
common words) of finding the n most common words 
for a = 1.0 and 1.2.  Diminishing returns can be seen 
after the first few hundred of the most common words; 
a 16-fold increase in n from 100 to 1600 increases the 
detection probability by only 23% for a=1.0 or 53% for 
a=1.2. 

 
Table 3. Cumulative occurrences for n most 

common words from Zipf’s Law 
(relative to n=100) 

n a = 1.0 a = 1.2 
25 0.736 0.826 
50 0.867 0.919 

100 1.000 1.000 
200 1.133 1.071 
400 1.267 1.133 
800 1.400 1.187 
1600 1.534 1.235 

 
An analysis of the nearly 106,000 English language 

words within a set of 18 short stories [19] was 
performed.  A word was defined as a case-insensitive 
character string consisting exclusively of letters and the 
apostrophe.  The results in Table 4 show that for the 
English short stories a value of “a” somewhat less that 
1 produces the best agreement.  Figure 1 shows a plot 

of the cumulative probability for words at least 3 
characters long (column 4 of Table 4). 

 
Table 4. Cumulative absolute and relative 
probability for n most common words in 

English short stories 
All Words Words >= 3 Letters 

n Cum. 
Prob. 

Relative 
to n=100 

Cum. 
Prob. 

Relative 
to n=100 

25 34.68% 0.682 28.67% 0.682 

50 42.90% 0.844 34.75% 0.827 

100 50.84% 1.000 42.04% 1.000 

200 58.64% 1.153 50.32% 1.197 

400 66.54% 1.309 59.31% 1.411 

800 74.21% 1.460 68.41% 1.627 

1600 81.77% 1.608 77.56% 1.845 

 

20%

30%

40%

50%

60%

70%

80%

0 200 400 600 800 1000 1200 1400 1600

n

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

Figure 1. Cumulative Probability of Word 
Occurrence vs. number of common words in 

English short stories 
 

word occurrence distribution then we can calculate the 
probability of identifying the language.  If the 
document contains W words we can compute the 
probability, P, it contains at least one of the most 
common words:  

P = 1-(1-p(n))W . (1)

 
Here p(n) is the cumulative probability of occurrence 
of the n most common words.  We will assume, from 
Table 1, that p(n) is 0.5.  For short documents of 5, 10 
and 15 words this yields probabilities P of 96.9%, 
99.9%, and 99.997%, respectively.  In realistic 
documents these probabilities are very much 
overestimated.  The words used in human language are 
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a prime example of a distribution composed of “Large 
Numbers of Rare Events” (LNRE) [20].  A prime 
example would be the 3-word message: “Attack at 
dawn.”  According to the word distribution table [14] 
“attack” is the 1209th most common word in English, 
“at” is 19th and “dawn” is the 8624th.  Unfortunately, 
our algorithm would ignore the first word as it is not 
preceded by a space, would ignore the second word as 
it is less than 3 characters, and would ignore the third 
word as it is followed by a period rather than a space.  
It is quite possible to generate documents, known as 
liponyms, without recourse to common words, much as 
in the field of lipography where common letters, 
typically “a” or “e”, are avoided. 

An example of the pattern matching is provided for 
the following 115-word paragraph with the most 
common English words shown in bold.  The 
superscripts indicate whether these words were in the 
top 50, 100, 200 or 400. 

A Spaniel is a group of gun dog breeds. Spaniels 
are50 generally smaller dogs with longer coats 
and drop ears whose200 job is to assist with bird 
hunting. Spaniels have50 the50 primary purposes 
of flushing game from dense undergrowth and 
retrieving game after100 it has50 been50 shot. 
Different400 breeds reflect different400 emphasis 
on the50 dogs' uses. At one50 time, spaniels were50 
subdivided into50 Land, Field, and Water400 
spaniels, according to the50 terrain in which50 
they50 worked best.  There50 has50 been50 so 
much100 interbreeding of various gun dogs over100 
the50 centuries to achieve additional breeds for 
new subniches that50 it is sometimes400 difficult 
to determine whether400 a breed is a spaniel, a 
retriever, both200 or neither.  

Table 5 summarizes the number of unique words and 
the number of word occurrences in these 4 sets of top 
words. 
Table 5. Pattern matches in 115-word spaniel 

paragraph 
n Unique Words Word Occurrences 
50 12 17 
100 15 20 
200 17 22 
400 21 27 

 
The 88 words not matched by the top 400 words fell 
into the following, non-mutually exclusive, categories: 
14 were not preceded or followed by spaces, 23 were 
less than 3 letters long, and the remainder, 52, were 
examples of “Rare Events” or rejected because they 
appear in foreign languages or in container language. 
Experimentation with a variety of web documents 
(including Internet forums, legal documents, and 
Wikipedia pages) revealed that:  

• For some languages (e.g., Spanish, native Arabic, 
native Farsi/Persian) identification was 100% with 
as few as 50 patterns. 

• For some languages, such as Russian, increasing 
the number of patterns significantly improved 
performance.  This would be expected for 
languages that make ample use of prefixes, 
postfixes and conjugations.  For these languages 
performance may be improved with either a 
greater number of patterns or less generous use of 
spaces before and after words to permit stem 
matches. 

• For some languages, such as Arabic chat (but not 
Arabic in native script), increasing the number of 
patterns significantly improved performance.  This 
is probably due to the wide variety of ways in 
which people transliterate words.  Greater 
numbers of patterns are required. 

• For scripts requiring many bytes per character our 
system matches short linguistic strings and greater 
numbers of patterns are required.  Arabic script 
languages are often represented using HTML 
codes[5] which require 7 bytes each in the ASCII 
form “&#xxxx;” where xxxx is a four-digit 
number.  Our 14-byte string match is thus limited 
to sequences of only 2 Arabic script characters 
encoded using HTML special characters. 

• For Chinese (and other Asian languages) the 
primary difficulty is the lack of spaces parsing 
character strings into words.  We use the most 
common 3-character Chinese sequences (6 bytes).  
Due to relative rarity of even the most common 3-
character strings, many are required for reasonable 
recall. 

Figure 2 shows the recall of documents from Arabic 
chat and Russian Internet forums.  The Russian recall 
increased from 80% to nearly 100% as the number of 
patterns was increased from 50 to 400.  The Arabic 
chat recall was relatively poor; it increased from 43% 
to only 57% as the number of patterns was similarly 
increased.  It should be noted that the Arabic chat 
documents were primarily in English with just a few 
words of Arabic chat mixed in. 
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Figure 2. Recall vs. nominal number of 

patterns 
 
 
6. Measuring performance 
 

Measuring the performance of language and script 
identification is complicated by many factors: 
• On network links there is a wide variety of formats 

with varying quantities and varieties of container 
language. 

• Should there be a minimum number of characters 
or words or sentences of a given language before a 
message is said to contain that language? 

• With multilingual messages, is it important to 
determine the relative amounts of each language? 

• Should a small mistake (e.g., confusing similar 
languages such as Norwegian with Swedish or 
Dutch with Afrikaans) count as much as a large 
mistake (e.g., confusing dissimilar languages such 
as English with Chinese)?  

• How reliable is your confidence in your answer?  
If your confidence is low, is it better to pass or to 
provide a potentially erroneous answer? 

• Can you distinguish between a language not 
covered in your table and a non-lingual message? 

• Should messages consisting of random words be 
considered to contain “language”?  These 
messages do not convey meaning but are designed 
to defeat Bayesian spam filters to deliver a website 
link. 

• Should you include all languages and coding 
schemes regardless of their a priori probabilities?  
Adding additional classes has complex influences 
on system performance including: 

o Additional opportunities for false 
detections due to the increased number of 
classes. 

o Reduced likelihood of false detections 
due to newly added classes outscoring 
random matches within incorrect classes.  

o Reduced pattern matches from words 
shared with other languages due to their 
removal from the word lists of other 
classes.  (See Rule 2 from Section 4.) 

The best solution to measuring performance is 
probably a cost matrix with different penalties for 
different errors.  Some credit should be given for 
identifying the script (e.g., Arabic) and additional 
credit for identifying the language that is encoded with 
that script (Arabic, Urdu, Persian, Kurdish, or Pashto).  
(Similarly, credit should be granted for determining 
that the script is Cyrillic and for determining that the 
language is Russian or one of the 60 other languages, 
from Avar to Yurak, with which it shares the script.)   
 
7. The algorithm 
 

For each text message we identify up to four classes 
with the highest non-zero numbers of identified 
common words.  We then discard any class whose 
score failed to exceed its class-specific threshold.  
Thresholds are typically set to small numbers (such as 
1-2) to reduce false alarms.  The end result is that each 
text message is identified as containing 0, 1, 2, 3 or 4 
language/script combinations.  The case of no reported 
combinations would be the expected answer for 
messages without linguistic text or in a language/script 
not included in the system’s linguistic repertoire. 
 
8. Experimental results 
 

Evaluating the correctness of language 
identification is difficult for the linguistically 
challenged.  We tested using several thousand 
messages in a variety of a priori unknown languages.  
Our approach was to run the same files through both 
our system and a more conventional N-gram based 
program (which was about five orders of magnitude 
slower).  (The N-gram program incorporated a 
preprocessor to remove container language.)  The two 
agreed on 88% of the messages and for these cases we 
assumed them to be both correct.  This left only a 
relatively small number of messages in need of 
evaluation by a human to establish ground truth.   

It appears that our system correctly identified the 
language and script of all messages that contained 
more than a handful of words in one of the 18 
combinations of language and script covered by our 
pattern set. 

Our system was especially effective correctly 
identifying English language spam containing 
intentional misspellings (especially with digits and 
punctuation within words plus use of accented letters).  
The misspellings typically occurred in the longer, less 
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common, words.  The misspellings created N-grams 
presumably not observed in the training data. 

The principal disagreement between our system and 
the N-gram program was with spam messages 
consisting of random words.  The N-gram program 
labeled these as “unknown” while our program labeled 
these with their specific languages.  The correct answer 
is debatable.  Strictly speaking, a language consists of a 
vocabulary and a grammar and this type of spam is 
grammar-free.  Since our N-gram analysis 
encompassed word-to-word transitions it effectively 
sensed the grammar while our word-based analysis 
ignored word sequence information.   
 
9. Discussion 
 
We have demonstrated the ability to accurately 
perform identification of language and script on a 
TCAM-based platform by searching for common 
words within packetized messages at speeds of several 
gigabits per second.  The TCAM supported rates of 
1013 string compares per second.  This may serve to 
enable such follow-on processing such as transcoding, 
translation or transliteration.  Similar high-speed 
hardware could be built to perform other knowledge 
discovery or data mining tasks.   

Our system assigns each string pattern an integer 
weight between 1 and 15.  Our efforts to date have 
used unit weights (i.e., a simple count of pattern 
matches).  Better accuracy might be achieved using 
weights determined from Term Frequency * Inverse 
Document Frequency [20, 21] which would assign low 
weights to common words in common languages (i.e., 
high document frequency) with higher weights 
assigned to less common words in less common 
languages. 
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