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Abstract

Humans communicate with text in thousands of
languages, in dozens of scripts, and a wide variety of
binary codes. There is a need to identify the language,
script and code of this text to enable follow-on
processing  such as  transcoding,  translation,
transliteration, routing and prioritization. This paper
deals with the implementation of real-time language
and script identification on high-speed hardware
(principally a ternary content addressable memory)
capable of processing network data streams at several
gigabits per second.

1. Introduction

We wish to accurately identify the language and
script of text messages in real-time on network data
streams. Our interest is in those documents generated
by humans for humans and not in control and
handshaking messages primarily designed for
computer-to-computer communications. This restricts
the problem to several thousand human languages,
each of which may be encoded several different ways
for transmission over the network.

The thousands of human languages typically use
one of 29 scripts. The scripts consist of phonetic,
syllabic or pictorial characters: alphabets (e.g., Latin,
Cyrillic, Arabic, Greek, Thai), syllabaries (Korean),
and pictograms (e.g., Chinese) [1,2]. Each script may
be encoded for transmission or storage in a variety of
codes such as Windows Code Pages [3], UTF-8 [4], or
HTML special character codes [5]. For example, the
English language uses the Latin script to render its
characters and this is typically transmitted and stored
using US-ASCII (or a functionally equivalent code).

2. Linguistic challenges

There are many difficulties in determining the
language of a message. The message may contain only
a few words. For example, the message might be
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simply “Yes”. The message might contain several
different languages. For example, the message might
be “Yes Monsieur Lopez”. Much language is
international: “White House”, ‘“President Bush”, “New
York City”, “Microsoft”, “PlayStation” and “Java” do
not necessarily imply that the language is English.
Many words are used, often with different meanings, in
different languages. For example, “son” is a common
word in English, French, Spanish and Italian. Many
words may be misspelled either intentionally (as in
spam) or unintentionally. Language may be
transliterated, such as Arabic or Russian appearing in
the Latin script. Real people tend to use informal
transliteration rules, often using characters that look
like rather than sound like their native characters, and
show a shocking disregard for formal transliteration
rules adopted by governments and academics [6]. The
linguistic content is often a minor constituent, typically
1-10%, of the characters within messages. This
content is skillfully camouflaged by background noise
consisting of headers, footers, formatting, JavaScript
[7], etc. Much of this background noise is in English
so superficially most messages appear to be in the
English language. Finally, real-time processing of
packetized messages on simple hardware means that
some packets (and hence text) may be missing or
appear out of sequence.

3. Technical constraints

The most critical technical constraint is time. At
typical network speeds, messages fly by in a few
microseconds. The problem can be stated as: “Given a
few microseconds, can you figure out the language and
script of a message?”’

We implemented language and script identification
on an existing platform that necessitated performing
this process primarily within a Ternary Content
Addressable Memory (TCAM) [8]. When queried
with a bit pattern, content addressable memory returns
the memory location(s) where that pattern appears.
This CAM is ternary in that bit patterns may be
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specified as “0”, “1” or “don’t care”. The application
of this TCAM to our high-speed requirement resulted
in several constraints. Patterns could be no more than
14 bytes. Each pattern may belong to only one class
(i.e., combination of language and script). Patterns
may not generate simultaneous matches. (For
example, you cannot search for both “men” and
“menu”.)! We can accommodate several hundred
patterns per class.

The TCAM interfaces with a Field-Programmable
Gate Array (FPGA) and operates on one packet at a
time. Packet payloads are typically 1440 bytes.
Assuming an average word length of 6 characters plus
1 space character, a packet may contain about 200
words. For each packet, the FPGA accumulates the
weighted sum (with each pattern assigned a weight
between 1 and 15) of the TCAM pattern matches for
each class. The FPGA reports the weighted counts,
which saturate at 255, to a CPU that accumulates
weighted class counts for each message.

4. Identifying language

The commonly used techniques to identify language
use fixed or variable length N-grams [9,10,11,12] or
common words [13]. Due to the difficulty of
performing quality control on the large corpora used to
generate common patterns, we chose to rely primarily
on quality control of the common patterns. We
selected common words over N-grams to make this
quality control process easier. Common words in a
specific language can be obtained from published word
frequency lists [14,15], word frequency statistics
obtained from softcopy corpora, or, for obscure
languages for which sufficiently large softcopy corpora
are unavailable, by translation of the common words in
a similar language.

As word frequency changes with time, published
word frequency lists may be out of date. (For example,
according to [14], “DOS” is the 450™ most commonly
used word in English.) Hence we chose to obtain
word frequencies from newer corpora.

The rules we set on choosing the patterns to use for
each language and scripts were:

1. Eliminate 1 and 2-letter words as being too likely
to generate false alarms. Much message content
may appear semi-random (such as JPG images)
and a I-character pattern would be expected to
generate about 6 matches per packet.

2. Eliminate words commonly used in more than one
language.

! The prior two constraints provide predictable TCAM
response time by preventing more than one pattern match
at a time.

3. Eliminate words commonly used in container
language such as HTML tags, XML tags,
JavaScript, and other common formatting.

4. Eliminate international words (e.g., proper nouns).

5. Append a space character before and after each
word to minimize false alarms (for languages that
normally separate words with spaces). Thus a
four-letter word becomes a 6-byte pattern with a
smaller false alarm rate at the expense of missing
words immediately followed by a punctuation
mark. Exceptions to this rule may be made to
allow intentional pre-fix or post-fix stemming so
that “ should” will match “ shouldn’t” and “
shoulder”.

6. Make ASCII patterns case insensitive by setting
the 6™ bit of each character as “don’t care”. For
example, “A” is 0100 0001 while “a” is 0110 0001
in binary so we search for 01X0 0001.

7. Words that normally include diacritics may be
written without them. To allow us to distinguish,
for example, between normal French and
unaccented French, we have segregated words
with diacritics into one class and words without
diacritics (and possibly words with their diacritics
removed) into another class.

Table 1 shows the five most common words in
English, French (without diacritics), Spanish (without
diacritics), native Arabic, and transliterated Arabic that
obey the above rules. Each underscore indicates a
single space character.

Table 1. Most common unique words (>2

letters)
. . . Arabic
English | French | Spanish | Arabic Chat
_the les _por_ 4 | 3ala
_this_ _une_ _una_ e | inta_
_was_ _est _como_ = kil
_his_ _qui_ _pero_ | _4=le | _wala_
“had | dans | porque | 1 _enta_

Chinese, Japanese and Korean use an extremely large
character set and spaces are infrequent. Statistics on
Chinese character sequences have been published
[16,17]. Table 2 shows the occurrence rates of the
most common character sequences within a set of more
than 27,000 news articles from 2003-2004 from
various Chinese media sources in different countries
and regions.

Table 2. Character occurrence in Chinese
news corpus

Character Sequence Length
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1 2 3 4
Top100 | 40.55% | 7.99% | 1.87% | 0.66%
I(‘)’g 73.85% | 16.37% | 3.99% | 1.48%

The table shows that if we search for the 100 most
common Chinese 3-characters sequences (typically
encoded in 6-bytes) then we would find about 2 pattern
matches within a 100-character news-like message;
searching for 400 such sequences would yield about 4
pattern matches. Searching for 2-character sequences
would quadruple the expected number of pattern
matches (at the expense of a greater likelihood of false
detections).

5. How many patterns are needed?

Given the practical limitations on the total number
of patterns that can be handled by the TCAM, we wish
to minimize the number of patterns per class. We can
estimate the relative value of the number of patterns
using Zipf’s law [18] that states that the probability of
the n™ most common word declines as 1/n* where “a”
is 1 or slightly greater. Table 3 shows the relative
cumulative likelihood (relative to that for the 100 most
common words) of finding the n most common words
for a = 1.0 and 1.2. Diminishing returns can be seen
after the first few hundred of the most common words;
a 16-fold increase in n from 100 to 1600 increases the
detection probability by only 23% for a=1.0 or 53% for
a=1.2.

Table 3. Cumulative occurrences for n most
common words from Zipf’s Law
(relative to n=100)

n a=1.0 a=1.2
25 0.736 0.826
50 0.867 0.919
100 1.000 1.000
200 1.133 1.071
400 1.267 1.133
800 1.400 1.187
1600 1.534 1.235

An analysis of the nearly 106,000 English language
words within a set of 18 short stories [19] was
performed. A word was defined as a case-insensitive
character string consisting exclusively of letters and the
apostrophe. The results in Table 4 show that for the
English short stories a value of “a” somewhat less that
1 produces the best agreement. Figure 1 shows a plot

of the cumulative probability for words at least 3
characters long (column 4 of Table 4).

Table 4. Cumulative absolute and relative
probability for n most common words in
English short stories

All Words Words >= 3 Letters

n Cum. Relative Cum. Relative

Prob. to n=100 Prob. to n=100
25 34.68% 0.682 28.67% 0.682
50 42.90% 0.844 34.75% 0.827
100 50.84% 1.000 42.04% 1.000
200 58.64% 1.153 50.32% 1.197
400 66.54% 1.309 59.31% 1.411
800 74.21% 1.460 68.41% 1.627
1600 81.77% 1.608 77.56% 1.845
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Figure 1. Cumulative Probability of Word
Occurrence vs. number of common words in
English short stories

word occurrence distribution then we can calculate the
probability of identifying the language. If the
document contains W words we can compute the
probability, P, it contains at least one of the most
common words:

P =1-(1-pn)". )]

Here p(n) is the cumulative probability of occurrence
of the n most common words. We will assume, from
Table 1, that p(n) is 0.5. For short documents of 5, 10
and 15 words this yields probabilities P of 96.9%,
99.9%, and 99.997%, respectively. In realistic
documents these probabilities are very much
overestimated. The words used in human language are
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a prime example of a distribution composed of “Large
Numbers of Rare Events” (LNRE) [20]. A prime
example would be the 3-word message: “Attack at
dawn.” According to the word distribution table [14]
“attack” is the 1209™ most common word in English,
“at” is 19™ and “dawn” is the 8624™. Unfortunately,
our algorithm would ignore the first word as it is not
preceded by a space, would ignore the second word as
it is less than 3 characters, and would ignore the third
word as it is followed by a period rather than a space.
It is quite possible to generate documents, known as
liponyms, without recourse to common words, much as
in the field of lipography where common letters,
typically “a” or “e”, are avoided.

An example of the pattern matching is provided for
the following 115-word paragraph with the most
common English words shown in bold. The
superscripts indicate whether these words were in the
top 50, 100, 200 or 400.

A Spaniel is a group of gun dog breeds. Spaniels

are” generally smaller dogs with longer coats

and drop ears whose™ job is to assist with bird
hunting. Spaniels have™ the” primary purposes
of flushing game from dense undergrowth and
retrieving game after'” it has™ been™ shot.
Different™ breeds reflect different” emphasis
on the™ dogs' uses. At one” time, spaniels were™
subdivided into® Land, Field, and Water"”
spaniels, according to the™ terrain in which™
they™ worked best. There” has” been™ so
much' interbreeding of various gun dogs over™
the® centuries to achieve additional breeds for
new subniches that” it is sometimes™ difficult

to determine whether™ a breed is a spaniel, a

retriever, both™ or neither.

Table 5 summarizes the number of unique words and
the number of word occurrences in these 4 sets of top
words.

Table 5. Pattern matches in 115-word spaniel

paragraph
n Unique Words | Word Occurrences
50 12 17
100 15 20
200 17 22
400 21 27

The 88 words not matched by the top 400 words fell
into the following, non-mutually exclusive, categories:
14 were not preceded or followed by spaces, 23 were
less than 3 letters long, and the remainder, 52, were
examples of “Rare Events” or rejected because they
appear in foreign languages or in container language.
Experimentation with a variety of web documents
(including Internet forums, legal documents, and
Wikipedia pages) revealed that:

e For some languages (e.g., Spanish, native Arabic,
native Farsi/Persian) identification was 100% with
as few as 50 patterns.

e For some languages, such as Russian, increasing
the number of patterns significantly improved
performance.  This would be expected for
languages that make ample use of prefixes,
postfixes and conjugations. For these languages
performance may be improved with either a
greater number of patterns or less generous use of
spaces before and after words to permit stem
matches.

e For some languages, such as Arabic chat (but not
Arabic in native script), increasing the number of
patterns significantly improved performance. This
is probably due to the wide variety of ways in
which people transliterate words. Greater
numbers of patterns are required.

e  For scripts requiring many bytes per character our
system matches short linguistic strings and greater
numbers of patterns are required. Arabic script
languages are often represented using HTML
codes[5] which require 7 bytes each in the ASCII
form “&#xxxx;” where xxxx is a four-digit
number. Our 14-byte string match is thus limited
to sequences of only 2 Arabic script characters
encoded using HTML special characters.

e For Chinese (and other Asian languages) the
primary difficulty is the lack of spaces parsing
character strings into words. We use the most
common 3-character Chinese sequences (6 bytes).
Due to relative rarity of even the most common 3-
character strings, many are required for reasonable
recall.

Figure 2 shows the recall of documents from Arabic
chat and Russian Internet forums. The Russian recall
increased from 80% to nearly 100% as the number of
patterns was increased from 50 to 400. The Arabic
chat recall was relatively poor; it increased from 43%
to only 57% as the number of patterns was similarly
increased. It should be noted that the Arabic chat
documents were primarily in English with just a few
words of Arabic chat mixed in.
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Figure 2. Recall vs. nominal number of
patterns

6. Measuring performance

Measuring the performance of language and script
identification is complicated by many factors:

e On network links there is a wide variety of formats
with varying quantities and varieties of container
language.

e Should there be a minimum number of characters
or words or sentences of a given language before a
message is said to contain that language?

e  With multilingual messages, is it important to
determine the relative amounts of each language?

e Should a small mistake (e.g., confusing similar
languages such as Norwegian with Swedish or
Dutch with Afrikaans) count as much as a large
mistake (e.g., confusing dissimilar languages such
as English with Chinese)?

e How reliable is your confidence in your answer?
If your confidence is low, is it better to pass or to
provide a potentially erroneous answer?

e Can you distinguish between a language not
covered in your table and a non-lingual message?

e Should messages consisting of random words be
considered to contain ‘“language”? These
messages do not convey meaning but are designed
to defeat Bayesian spam filters to deliver a website
link.

e Should you include all languages and coding
schemes regardless of their a priori probabilities?
Adding additional classes has complex influences
on system performance including:

o Additional opportunities for false
detections due to the increased number of
classes.

o Reduced likelihood of false detections
due to newly added classes outscoring
random matches within incorrect classes.

o Reduced pattern matches from words
shared with other languages due to their
removal from the word lists of other
classes. (See Rule 2 from Section 4.)

The best solution to measuring performance is
probably a cost matrix with different penalties for
different errors. Some credit should be given for
identifying the script (e.g., Arabic) and additional
credit for identifying the language that is encoded with
that script (Arabic, Urdu, Persian, Kurdish, or Pashto).
(Similarly, credit should be granted for determining
that the script is Cyrillic and for determining that the
language is Russian or one of the 60 other languages,
from Avar to Yurak, with which it shares the script.)

7. The algorithm

For each text message we identify up to four classes
with the highest non-zero numbers of identified
common words. We then discard any class whose
score failed to exceed its class-specific threshold.
Thresholds are typically set to small numbers (such as
1-2) to reduce false alarms. The end result is that each
text message is identified as containing 0, 1, 2, 3 or 4
language/script combinations. The case of no reported
combinations would be the expected answer for
messages without linguistic text or in a language/script
not included in the system’s linguistic repertoire.

8. Experimental results

Evaluating  the  correctness of language
identification is difficult for the linguistically
challenged. We tested using several thousand
messages in a variety of a priori unknown languages.
Our approach was to run the same files through both
our system and a more conventional N-gram based
program (which was about five orders of magnitude
slower).  (The N-gram program incorporated a
preprocessor to remove container language.) The two
agreed on 88% of the messages and for these cases we
assumed them to be both correct. This left only a
relatively small number of messages in need of
evaluation by a human to establish ground truth.

It appears that our system correctly identified the
language and script of all messages that contained
more than a handful of words in one of the 18
combinations of language and script covered by our
pattern set.

Our system was especially effective correctly
identifying English language spam containing
intentional misspellings (especially with digits and
punctuation within words plus use of accented letters).
The misspellings typically occurred in the longer, less
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common, words. The misspellings created N-grams
presumably not observed in the training data.

The principal disagreement between our system and
the N-gram program was with spam messages
consisting of random words. The N-gram program
labeled these as “unknown” while our program labeled
these with their specific languages. The correct answer
is debatable. Strictly speaking, a language consists of a
vocabulary and a grammar and this type of spam is
grammar-free. Since our N-gram analysis
encompassed word-to-word transitions it effectively
sensed the grammar while our word-based analysis
ignored word sequence information.

9. Discussion

We have demonstrated the ability to accurately
perform identification of language and script on a
TCAM-based platform by searching for common
words within packetized messages at speeds of several
gigabits per second. The TCAM supported rates of
10" string compares per second. This may serve to
enable such follow-on processing such as transcoding,
translation or transliteration.  Similar high-speed
hardware could be built to perform other knowledge
discovery or data mining tasks.

Our system assigns each string pattern an integer
weight between 1 and 15. Our efforts to date have
used unit weights (i.e., a simple count of pattern
matches). Better accuracy might be achieved using
weights determined from Term Frequency * Inverse
Document Frequency [20, 21] which would assign low
weights to common words in common languages (i.e.,
high document frequency) with higher weights
assigned to less common words in less common
languages.
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